图的理论基础

in with 0 comment

图的基本概念

图的定义

定义:图(graph)是由一些点(vertex)和这些点之间的连线(edge)所组成的;其中,点通常被成为"顶点(vertex)",而点与点之间的连线则被成为"边或弧"(edege)。通常记为,G=(V,E)。

图的种类

根据边是否有方向,将图可以划分为:无向图和有向图。

无向图


上面的图G0是无向图,无向图的所有的边都是不区分方向的。G0=(V1,
)。其中,

有向图


上面的图G2是有向图。和无向图不同,有向图的所有的边都是有方向的! G2=(V2,
)。其中,

邻接点和度

邻接点

一条边上的两个顶点叫做邻接点。
例如,上面无向图G0中的顶点A和顶点C就是邻接点。

在有向图中,除了邻接点之外;还有"入边"和"出边"的概念。
顶点的入边,是指以该顶点为终点的边。而顶点的出边,则是指以该顶点为起点的边。
例如,上面有向图G2中的B和E是邻接点;<B,E>是B的出边,还是E的入边。

在无向图中,某个顶点的度是邻接到该顶点的边(或弧)的数目。
例如,上面无向图G0中顶点A的度是2。

在有向图中,度还有"入度"和"出度"之分。
某个顶点的入度,是指以该顶点为终点的边的数目。而顶点的出度,则是指以该顶点为起点的边的数目。
顶点的度=入度+出度。
例如,上面有向图G2中,顶点B的入度是2,出度是3;顶点B的度=2+3=5。

路径和回路

连通图和连通分量


在学习"哈夫曼树"的时候,了解过"权"的概念。图中权的概念与此类似。
上面就是一个带权的图。

图的存储结构

上面了解了"图的基本概念",下面开始介绍图的存储结构。图的存储结构,常用的是"邻接矩阵"和"邻接表"。

邻接矩阵

邻接矩阵是指用矩阵来表示图。它是采用矩阵来描述图中顶点之间的关系(及弧或边的权)。
假设图中顶点数为n,则邻接矩阵定义为:

通常采用两个数组来实现邻接矩阵:一个一维数组用来保存顶点信息,一个二维数组来用保存边的信息。
邻接矩阵的缺点就是比较耗费空间。

邻接表

邻接表是图的一种链式存储表示方法。它是改进后的"邻接矩阵",它的缺点是不方便判断两个顶点之间是否有边,但是相对邻接矩阵来说更省空间。